Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474173

RESUMO

Transgenic technology is a crucial tool for gene functional analysis and targeted genetic modification in the para rubber tree (Hevea brasiliensis). However, low efficiency of plant regeneration via somatic embryogenesis remains a bottleneck of successful genetic transformation in H. brasiliensis. Enhancing expression of GROWTH-REGULATING FACTOR 4 (GRF4)-GRF-INTERACTING FACTOR 1 (GIF1) has been reported to significantly improve shoot and embryo regeneration in multiple crops. Here, we identified endogenous HbGRF4 and HbGIF1 from the rubber clone Reyan7-33-97, the expressions of which dramatically increased along with somatic embryo (SE) production. Intriguingly, overexpression of HbGRF4 or HbGRF4-HbGIF1 markedly enhanced the efficiency of embryogenesis in two H. brasiliensis callus lines with contrasting rates of SE production. Transcriptional profiling revealed that the genes involved in jasmonic acid response were up-regulated, whereas those in ethylene biosynthesis and response as well as the S-adenosylmethionine-dependent methyltransferase activity were down-regulated in HbGRF4- and HbGRF4-HbGIF1-overexpressing H. brasiliensis embryos. These findings open up a new avenue for improving SE production in rubber tree, and help to unravel the underlying mechanisms of HbGRF4-enhanced somatic embryogenesis.


Assuntos
Hevea , Hevea/genética , Borracha/metabolismo , Látex , Regulação da Expressão Gênica de Plantas
2.
Curr Issues Mol Biol ; 45(12): 9342-9353, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132431

RESUMO

Natural rubber (cis-1,4-polyisoprene, NR) is an important raw material utilized widely in the manufacturing of medical, agricultural, and industrial products. Rubber tree (Hevea brasiliensis) and several alternative rubber-producing plants (Taraxacum kok-saghyz, Lactuca sativa, and Parthenium argentatum) have the capability to produce high-quality NR. With the progress of genome sequencing, similar rubber biosynthesis pathways have been discovered among different rubber-producing plant species. NR is synthesized and stored in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The rubber transferase complex is considered to be the pivotal enzyme involved in catalyzing NR biosynthesis. However, the exact compositions of the RT complex in rubber-producing plants remain elusive and poorly understood. Here, we review the progress of genome sequencing, natural rubber biosynthesis, and the components of the RT complex in rubber-producing plants. We emphasize that identifying the detailed components of the RT complex holds great significance for exploring the mechanism of NR biosynthesis and accelerating molecular breeding in rubber-producing plants.

3.
Front Plant Sci ; 14: 1287318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023827

RESUMO

MicroRNAs (miRNAs) are widely involved in various aspects of plant growth and development. However, how miRNAs and their targets regulate natural rubber metabolism remains unclear in the rubber-producing dandelions, which are being developed as alternative commercial sources of natural rubber. Here, we combined small RNA sequencing, degradome sequencing, target gene prediction, and mRNA sequencing to identify miRNAs and their targets in two dandelion species, the high rubber-yielding Taraxacum kok-saghyz (Tk) and the low rubber-yielding T. spadiceum (Ts). A total of 142 miRNAs, including 108 known and 34 novel ones, were discovered, with 53 identified as differentially expressed (DE) between the latex of Tk and Ts. Degradome sequencing identified 145 targets corresponding to 74 miRNAs. TAPIR and psRNATarget, respectively, predicted 165 and 164 non-redundant targets for the 53 aforementioned DE miRNAs. Gene ontology (GO) enrichment analysis indicated the DE miRNAs and their targets might affect natural rubber production via regulating macromolecular biosynthesis and metabolism in latex. Four critical types of regulatory modules, including miR172-AP2/ERF, miR164-NAC, miR160-ARF, and miRN19-protein kinase, were identified and their interaction networks were constructed, indicating a potential involvement in natural rubber production. The findings and the large miRNA dataset presented here are beneficial to further deciphering the roles of miRNAs in the biosynthesis of natural rubber and medicinal metabolites in dandelion.

4.
Small ; 19(40): e2302686, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37208798

RESUMO

Developing carbon encapsulated magnetic composites with rational design of microstructure for achieving high-performance electromagnetic wave (EMW) absorption in a facile, sustainable, and energy-efficiency approach is highly demanded yet remains challenging. Here, a type of N-doped carbon nanotube (CNT) encapsulated CoNi alloy nanocomposites with diverse heterostructures are synthesized via the facile, sustainable autocatalytic pyrolysis of porous CoNi-layered double hydroxide/melamine. Specifically, the formation mechanism of the encapsulated structure and the effects of heterogenous microstructure and composition on the EMW absorption performance are ascertained. With the presence of melamine, CoNi alloy emerges its autocatalysis effect to generate N-doped CNTs, leading to unique heterostructure and high oxidation stability. The abundant heterogeneous interfaces induce strong interfacial polarization to EMWs and optimize impedance matching characteristic. Combined with the inherent high conductive and magnetic loss capabilities, the nanocomposites accomplish a high-efficiency EMW absorption performance even at a low filling ratio. The minimum reflection loss of -84.0 dB at the thickness of 3.2 mm and a maximum effective bandwidth of 4.3 GHz are obtained, comparable to the best EMW absorbers. Integrated with the facile, controllable, and sustainable preparation approach of the heterogenous nanocomposites, the work shows a great promise of the nanocarbon encapsulation protocol for achieving lightweight, high-performance EMW absorption materials.

5.
Planta ; 253(2): 44, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33481116

RESUMO

MAIN CONCLUSION: The function of SQUAMOSA PROMOTER-BINDING PROTEIN-BOX gene TaSPL14 in wheat is similar to that of OsSPL14 in rice in regulating plant height, panicle length, spikelet number, and thousand-grain weight of wheat, but differs during tiller development. TaSPL14 may regulate spike development via ethylene-response gene EIN3-LIKE 1 (TaEIL1), ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 2.11 (TaRAP2.11), and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 1 (TaERF1), but not DENSE AND ERECT PANICLE 1 (TaDEP1) in wheat. The SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene OsSPL14 from rice is considered to be a major determinant of ideal plant architecture consisting of few unproductive tillers, more grains per spike, and high resistance of stems to lodging. However, the function of its orthologous gene, TaSPL14, in wheat is unknown. Here, we reported the functional similarities and differences between TaSPL14 and OsSPL14. Similar to OsSPL14 knock-outs in rice, wheat TaSPL14 knock-out plants exhibited decreased plant height, panicle length, spikelet number, and thousand-grain weight. In contrast to OsSPL14, however, TaSPL14 did not affect tiller number. Transcriptome analysis revealed that the expression of genes related to ethylene response was significantly decreased in young spikes of TaSPL14 knock-out lines as compared with wild type. TaSPL14 directly binds to the promoters of the ethylene-response genes TaEIL1, TaRAP2.11, and TaERF1, and promotes their expression, suggesting that TaSPL14 might regulate wheat spike development via the ethylene-response pathway. The elucidation of TaSPL14 will contribute to understanding of the molecular mechanisms that underlie wheat plant architecture.


Assuntos
Proteínas de Plantas , Fatores de Transcrição , Triticum , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Inativação de Genes , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/anatomia & histologia , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
Plant Physiol ; 181(1): 179-194, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209125

RESUMO

In grass crops, leaf angle is determined by development of the lamina joint, the tissue connecting the leaf blade and sheath, and is closely related to crop architecture and yield. In this study, we identified a mutant generated by fast neutron radiation that exhibited an erect leaf phenotype caused by defects in lamina joint development. Map-based cloning revealed that the gene TaSPL8, encoding a SQUAMOSA PROMOTER BINDING-LIKE (SPL) protein, is deleted in this mutant. TaSPL8 knock-out mutants exhibit erect leaves due to loss of the lamina joint, compact architecture, and increased spike number especially in high planting density, suggesting similarity with its LIGULESS1 homologs in maize (Zea mays) and rice (Oryza sativa). Hence, LG1 could be a robust target for plant architecture improvement in grass species. Common wheat (Triticum aestivum, 2n = 6× = 42; BBAADD) is an allohexaploid containing A, B, and D subgenomes and the homeologous gene of TaSPL8 from the D subgenome contributes to the length of the lamina joint to a greater extent than that from the A and B subgenomes. Comparison of the transcriptome between the Taspl8 mutant and the wild type revealed that TaSPL8 is involved in the activation of genes related to auxin and brassinosteroid pathways and cell elongation. TaSPL8 binds to the promoters of the AUXIN RESPONSE FACTOR gene and of the brassinosteroid biogenesis gene CYP90D2 and activates their expression. These results indicate that TaSPL8 might regulate lamina joint development through auxin signaling and the brassinosteroid biosynthesis pathway.


Assuntos
Brassinosteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Triticum/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
7.
Theor Appl Genet ; 131(4): 839-849, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29359263

RESUMO

KEY MESSAGE: QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Repetições de Microssatélites , Fenótipo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...